Scaffold R wrappers for Python functions

scaffold_py_function_wrapper(
  python_function,
  r_function = NULL,
  file_name = NULL
)

Arguments

python_function

Fully qualified name of Python function or class constructor (e.g. tf$nn$top_k)

r_function

Name of R function to generate (defaults to name of Python function if not specified)

file_name

The file name to write the generated wrapper function to. If NULL, the generated wrapper will only be printed out in the console.

Note

The generated wrapper will often require additional editing (e.g. to convert Python list literals in the docs to R lists, to massage R numeric values to Python integers via as.integer where required, etc.) so is really intended as an starting point for an R wrapper rather than a wrapper that can be used without modification.

Examples

# \donttest{ library(scaffolder) library(tensorflow) scaffold_py_function_wrapper("tf$nn$top_k")
#> #' @title top_k #> #' #> #' @description Finds values and indices of the `k` largest entries for the last dimension. #> #' #> #' @details If the input is a vector (rank=1), finds the `k` largest entries in the vector #> #' and outputs their values and indices as vectors. Thus `values[j]` is the #> #' `j`-th largest entry in `input`, and its index is `indices[j]`. For matrices (resp. higher rank input), computes the top `k` entries in each #> #' row (resp. vector along the last dimension). Thus, values.shape = indices.shape = input.shape[:-1] + [k] If two elements are equal, the lower-index element appears first. #> #' #> #' @param input 1-D or higher `Tensor` with last dimension at least `k`. #> #' @param k 0-D `int32` `Tensor`. Number of top elements to look for along the last dimension (along each row for matrices). #> #' @param sorted If true the resulting `k` elements will be sorted by the values in descending order. #> #' @param name Optional name for the operation. #> #' #> #' @return values: The `k` largest elements along each last dimensional slice. indices: The indices of `values` within the last dimension of `input`. #> #' #> #' @export #> top_k <- function(input, k = 1L, sorted = TRUE, name = NULL) { #> #> python_function_result <- tf$nn$top_k( #> input = input, #> k = k, #> sorted = sorted, #> name = name #> ) #> #> }
# }