Considerations for Large
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Accelerate large scale ML

Complex and unexpected data characteristics
Model lifecycle management

Visualization on ML experiments



Hardware Accelerators

e GPUs

o NVDIA cuDNN (training)

o NVDIA TensorRT (inference)
e Virtual Cloud TPUs

o Google Cloud (inference)
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TensorFlow Architecture
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Distributed Training




Data Parallelism
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Model Parallelism




Large Dataset




Large Dataset

Out-of-core training

Distributed file systems and dataset representations
In-database training

Mini-batches/streaming



Model Deployment




Model Deployment

During training generally we're looking to approximate a target Y by finding fto

Y = f(X)+e
/

Often fis highly complex and nonlinear _ S
where error € is out of our control and minimized



Model Deployment
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Model Deployment - Types of Artifacts

Predictive Model Markup Language (PMML)

Plain Old Java Object (POJO) or a Model Object, Optimized (MOJO)
Portable Format for Analytics (PFA)

TensorFlow 's SavedModel (mobile optimized version - TensorFlow Lite)
Open Neural Network Exchange (ONNX) - a standard format for models
built using different frameworks (e.g. TensorFlow, MXNet, PyTorch, etc.)



Model Deployment - REST APIs
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Model Deployment - Batch

Some ingestion
process
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Model Deployment - Streaming
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Time Sensitive and Streaming Data

e Eventtime
e Processing time



Time Sensitive and Streaming Data

Normal Out of Order

Processing Time

Event Time



Time Sensitive and Streaming Data
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Concept Drift

e Condition monitoring on industry assets
o Taking actions based on the predictions
o Sensors are malfunctioning
e Retraining
o Batch retraining
o Online learning



Data Validation

e Anomalies detection
o Summary statistics
o Schema changes
o Missing values
e Rolling changes to production models
o Custom data validation rules



Train-serve Skew

e Differences in:
o Statistical distributions
o Processing topologies
o Programming languages
o ML frameworks



Adversarial Attacks

x sign(V,J(0,z,y))

T+
esign(V,J (0,2, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence



Adversarial Attacks

correct +distort ostrich crrect +distort ostrich



Model Management




Model Management

Access and permission controls

Status control for different environments
Model versioning
Model monitoring



Visualizations
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TensorBoard SCALARS IMAGES AUDIO GRAPHS
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TensorBoard EVENTS  IMAGES
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Visualization - Decision Trees

Xp €245
gini = 0.6667

samples = 150
value = [50, 50, 50]

samples = 100
value = [0, 50, 50]

Xp £6.95
gini = 0.4444
samples = 3
value = [0, 2, 1]



(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar ~ (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top
3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)

"Why Should | Trust You?": Explaining the Predictions of Any Classifier



Thank you! Any questions?

(@terrytangyuan
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Model Deployment Error

Breaking Linear Classifier on ImageNet

"Why Should | Trust You?": Explaining the Predictions of Any Classifier
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